Dual Role of Acetanilides: Traceless Removal of a Directing Group through Deacetylation/Diazotation and Palladium-Catalyzed C−C-Coupling Reactions

Bernd Schmidt,* Nelli Elizarov, Uwe Schilde, and Alexandra Kelling

Universitaet Potsda[m](#page-10-0), Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany

S Supporting Information

[AB](#page-9-0)STRACT: [The acetamid](#page-9-0)e group enables regioselective oxidative ortho-C− H activation reactions, such as Pd-catalyzed acylation. The synthetic utility of these transformations can be significantly enhanced by using the acetamide as a quasi-leaving group in a subsequent conventional Pd-catalyzed coupling or cross-coupling reaction. The concept is illustrated herein for the synthesis of oalkenyl- and o-arylphenones, which have potential for the synthesis of arylated aromatic heterocycles.

ENTRODUCTION

Since Fujiwara and Moritani's original publication on the Pdmediated coupling of alkenes and arenes, 1 the field of transition-metal-catalyzed oxidative C−H activation has seen tremendous progress, which has been [do](#page-10-0)cumented in numerous recent reviews. 2^{-4} While the coupling between alkenes and arenes⁵ has probably been studied in more detail than any other C−H acti[va](#page-10-0)t[io](#page-10-0)n reaction, several examples of other transition-m[et](#page-10-0)al-catalyzed oxidative C−C bond-forming reactions have recently been published.^{6−10} For example, transition-metal-catalyzed oxidative acylation reactions have been explored over the past few y[ea](#page-10-0)r[s](#page-10-0) to synthesize benzophenones and alkyl aryl ketones regioselectively. The first report in this regard was a decarboxylative ortho-acylation of acetanilides using α -oxocarboxylic acids, an oxidant, and a Pd precatalyst.¹¹ Shortly afterward, it was demonstrated that the α oxocarboxylic acids can be replaced by aldehydes,12−¹⁴ benzylic alcohols¹⁵ [or](#page-10-0) ethers,¹⁶ styrenes,^{17,18} or toluene derivatives.^{19–23} Like most transition-metal-catalyzed aromatic C[−](#page-10-0)[H a](#page-10-0)ctivation reaction[s,](#page-10-0) these tr[ans](#page-10-0)formatio[ns r](#page-10-0)equire the presence [of a](#page-10-0) coordinating functional group which will direct the electrophilic metal (in many cases Pd^{2+}) to the *ortho-position*.¹⁰ Among the first functional groups identified as efficient catalyst directing moieties were acetanilides. For example, Horin[o a](#page-10-0)nd Inoue, 2^2 and shortly afterward Tremont and Rahman²⁵ isolated dimeric acetate-bridged Pd−σ-aryl complexes (depicted in monome[ric](#page-10-0) form as structure 4 in Scheme 1) when [a](#page-10-0)cetanilides were treated with $Pd(OAc)_{2}$ and demonstrated that these complexes undergo stoichiometric C−C bond-forming reactions with alkenes or alkyl halides, respectively. Later, the former

Scheme 1. Consecutive Pd^{2+} - and $Pd(0)$ -Catalyzed 1,2-Difunctionalization of Acetanilides

transformation evolved into a truly catalytic process by reoxidizing Pd(0) to Pd²⁺, e.g., with benzoquinone.²

Over the past few years, the requirement of a catalyst directing and activating group to ensure mild con[dit](#page-10-0)ions and good regioselectivities has increasingly been recognized as a severe limitation of aromatic C−H activation reactions, in particular when target structures without the specific functional group or a closely related functional group are addressed.²⁷⁻²⁹ Consequently, strategies have been developed to remove a particular directing group, e.g., by hydrolytic cleava[ge or](#page-10-0) transesterification, as exemplified by a Rh-catalyzed orthoarylation of phenols in the presence of phosphinite cocatalysts.³⁰ Hydrolytic removal of a catalyst directing group (CDG) is, however, only facile if the group is attached to the molecular [co](#page-10-0)re through a heteroatom. Recently, we described an approach to remove a catalyst directing group by conversion

Received: February 5, 2015 Published: February 20, 2015 to a leaving group suitable for Pd(0)-catalyzed coupling or cross-coupling reactions.³¹ In this project, acetanilides 1 were first functionalized at the *ortho-position* via Pd^{2+} -catalyzed Fujiwara−Moritani react[ion](#page-10-0)s, and the resulting products 2 were then subjected to the deacetylation−diazotation−coupling sequence previously developed in our group^{32−34} to furnish 1,2-disubstituted arenes 3 with high regioselectivity. The deacetylation−diazotation−coupling sequence [re](#page-10-0)l[ies](#page-10-0) on the in situ formation of arene diazonium salts 5, which are highly reactive electrophilic reagents in Pd(0)-catalyzed C−C bondforming reactions (Scheme 1).35−³⁸

Parallel to our preliminary communication, a conceptually similar sequence for the 1,[2-](#page-0-0)d[ifunct](#page-10-0)ionalization of arenes was disclosed by Huang and co-workers, who used a triazene as a directing group for a Rh-catalyzed C−H activation. Traceless removal of the triazene and further functionalization were then accomplished by treatment with Brønsted acids (to generate a diazonium cation in situ) and arylation or Pd-catalyzed alkenylation.³⁹

In continuation of our studies on this field, we investigated a[n](#page-10-0) extension of the consecutive $Pd^{2+}/Pd(0)$ -catalyzed 1,2difunctionalization outlined in Scheme 1 to the synthesis of highly functionalized aromatic ketones. These compounds are valuable synthetic intermediates for the synthesis of numerous heterocyclic scaffolds such as xanthones, $40/41$ benzodiazepines, 42 or acridones.⁴³ In addition, aromatic ketones have also been used as selective cyclooxygenase-2 in[hibit](#page-10-0)ors⁴⁴ and for t[he](#page-10-0) synthesis of [b](#page-10-0)iologically active natural⁴⁵ and non-natural⁴⁶ indan derivatives.

■ RESULTS AND DISCUSSION

Synthesis of o-Acylacetanilides 8. We began the investigation with the synthesis of a set of o-acylacetanilides 8 from acetanilides 6 and aldehydes 7, using a protocol recently developed by Novák and co-workers.¹⁴ Under the reaction conditions developed by these authors, a successful and highly regioselective ortho-acylation can be a[cco](#page-10-0)mplished at ambient or slightly elevated temperatures in aqueous medium using a commercially available aqueous solution of tert-butyl hydroperoxide as oxidant, $Pd(OAc)_2$ as catalyst, and sodium lauryl sulfate as surfactant (Scheme 2).

Synthesis and Isolation of o-Acylarene Diazonium Salts 9. With the o-acylacetanilides 8 in hand, we first investigated a deacetylation−diazotation sequence with a view to isolate the functionalized arene diazonium salts 9 as their tetrafluoroborates. We have previously developed a deacetylation−diazotation protocol which relies on a deacetylation promoted by BF_3 −methanol complex, followed by in situ diazotation with *tert*-butyl nitrite.^{32,47} As crucial parameters for this one-flask sequence were identified the initial substrate concentration, as lower substrate [con](#page-10-0)centrations often prevent the isolation of the diazonium tetrafluoroborate through precipitation, the temperature for the diazotation step, and the number of equivalents of tert-butyl nitrite. While low reaction temperatures often retard the diazotation reaction, they reduce the solubility of the diazonium salts in the alcoholic solvent, which in turn facilitates their isolation. The reduced rate of the diazotation step at lower temperatures can be compensated to some extent by increasing the amount of alkyl nitrite. On the other hand, we found that excess of tert-butyl nitrite can be disadavantageous if the deacetylation−diazotation sequence is to be extended by a Pd-catalyzed coupling reaction because alkyl nitrites partially inhibit $Pd(0)$ -catalyzed reactions,

presumably due to their oxidizing properties.³³ For these reasons we aimed at a minimization of the amount of diazotation reagent and used excess tert-butyl [nit](#page-10-0)rite only if necessary. The results compiled in Table 1 show that by systematic variation of the above-mentioned parameters suitable conditions for the deacetylation−dia[zo](#page-2-0)tation sequence were identified for almost all acetanilides 8, which allow the isolation of the corresponding diazonium salts 9 as microcrystalline powders in synthetically useful yields, with just two exceptions. The isobutyl-substituted derivative 8e is apparently completely converted to the expected diazonium salt 9e in the deacetylation−diazotation sequence, as indicated by TLC, but it does not precipitate under any combination of reaction parameters (entry 7). In the case of benzophenone 8j, TLC analysis shows that the deacetylation proceeds quantitatively, but the intermediate aniline undergoes diazotation only with incomplete conversion (entry 19).

Deacetylation−Diazotation−Coupling (DDC) Sequence of o-Acylacetanilides 9. Before investigating the envisaged extension of the one-flask deacetylation−diazotation sequence by a Pd-catalyzed coupling reaction, we decided to investigate the C−C bond-forming reaction separately. To this end, the isolated arene diazonium salts 9 and methyl acrylate were coupled in a Matsuda−Heck^{36,48} reaction. The most important parameters for the outcome of Pd-catalyzed coupling reactions involving arene diazonium [salt](#page-10-0)s are the solvent and the presence or absence of a base. It is an important requirement for one-flask reactions in general that the

Table 1. Deacetylation−Diazotation Sequence of o‑Acylacetanilides 8

 $a_{\rm n.i.,\ not\ isolated.}$ b Full conversion to diazonium salt (TLC), but not isolable with any combination of T , c , and n (t -BuONO). ^cIncomplete conversion (TLC) to diazonium salt with any combination of T, c and n (t -BuONO).

conditions chosen for the individual steps are compatible. For this reason, we had to rely on base-free methanol as a solvent because these conditions come closest to those of the preceding deacetylation−diazotation sequence. Commonly used precatalysts for Matsuda–Heck reactions are $Pd_2(dba)_3$ ·CHCl₃ and $Pd(OAc)₂$. For convenience, we started with $Pd(OAc)₂$, which catalyzed gratifyingly in all cases the coupling of arene diazonium salts 9 and methyl acrylate to the expected cinnamates 10 in high yields in methanol under base-free conditions (Table 2, conditions A). o-Acyl cinnamates of the general structure 10 have previously been synthesized using, for example, a Wittig olefination, 45 for a single example a Matsuda−Heck reaction,⁴⁹ and a Ru-catalyzed o-alkenylation of aromatic ketones. 50 With [th](#page-10-0)ese results in hand, we investigated a synthesis [of](#page-10-0) o-acyl cinnamates 10 from o-acyl acetanilides 8 via a [d](#page-10-0)eacetylation−diazotation−coupling sequence. To this end, acetanilides 8 were treated with BF_3 − methanol complex at 65 °C to accomplish the deacetylation, followed by addition of t-BuONO at −21 °C for the diazotation. Without removal or exchange of any solvents or byproducts, the Matsuda−Heck reaction of the in situ formed diazonium salts was initiated by simply adding $Pd(OAc)_{2}$ and methyl acrylate to the mixture, which was then warmed to ambient temperature (conditions B). In all cases, the Matsuda− Heck products 10 could be isolated, mostly in yields exceeding those obtained via the two-step procedure involving isolated arene diazonium salts. Notably, the isobutyl-substituted derivative 10e, which cannot be synthesized via the two-step procedure as the corresponding arene diazonium salt 9e could not be isolated, becomes accessible in excellent yield under conditions B (Table 2, entry 5). Compound 10j was isolated in low yield, which can most likely be attributed to the incomplete formation of the intermediate diazonium salt (Table 2, entry 10; compare Table 1, entry 19).

Investigation into Heterocycle Synthesis from o-Acyl Cinnamates. With a view toward the synthesis of phthalazine derivatives we planned a condensation−conjugate addition sequence as outlined in Scheme 3, using hydrazine as a bisnucleophile. Precedence for the formation of phthalazine derivatives through cascade reactio[ns](#page-3-0) involving a conjugate

Table 2. Comparison of One- And Two-Step Deacetylation−Diazotation Coupling Sequence

^aYield of 10 obtained from 9 with conditions A. ^bCalculated yield of 10 based on 8 over two steps. ^cYield of 10 obtained from 8 with conditions B.
^dNot performed (diazonium salts **9e** and **9i** not isolable) d Not performed (diazonium salts 9e and 9j not isolable).

addition step has been published by Grigg et al., who reported a Pd-catalyzed carbonylation of iodoarenes, followed by acylation-conjugate addition of the bisnucleophile hydrazine.⁵¹

Obviously, the C−N bond-forming steps might occur in a reversed order, but in any case one step will involve formati[on](#page-10-0) of a hydrazone. For less reactive carbonyl compounds, such as benzophenones, this reaction normally requires acid catalysis and/or elevated temperatures.52,53 For these reasons, we started our investigation into the proposed condensation−conjugate addition sequence by mixing [equ](#page-10-0)imolar amounts of 10a and hydrazine hydrate in ethanol, which was then heated to reflux for 16 h (Table 3, entry 1). Both TLC and NMR spectroscopy

Table 3. Conditions for Condensation−Conjugate Addition Sequence of 10a and Hydrazine

entry	heating method solvent $(\text{temp}, {}^{\circ}C)$		time (h)	product $(\text{yield}, \%)$
1	ethanol	conventional (78)	16	a
$\overline{2}$	ethanol/water (1:1)	conventional (78)	72	a
3	acetic acid	conventional (118)	72	a
$\overline{4}$	ethanol	μ -wave irradiation (180)	0.5	a
5	ethanol/water (1:1)	μ -wave irradiation (180)	0.5	a
6	ethyl acetate	μ -wave irradiation (180)	0.5	a
7	toluene	μ -wave irradiation (180)	0.3	a
8	toluene	μ -wave irradiation (250)	0.5	a
9	ethylene glycol	μ -wave irradiation (250)	0.5	14 $(20)^b$
10	ethylene glycol	μ -wave irradiation (250)	1.0	14 $(20)^b$

 a Complex mixture of products; no major product identified. b Major product 14 is formed along with several minor products.

of the crude reaction mixture revealed the formation of a complex mixture of products. The same outcome was observed in ethanol/water and in acetic acid under reflux (entries 2 and 3). Performing reactions under microwave irradiation often reduces reaction times significantly and may lead to higher selectivities.⁵⁴ This prompted us to investigate the projected reaction of hydrazine and 10a in a microwave reactor using various sol[ven](#page-10-0)ts such as ethanol, ethanol/water, ethyl acetate, and toluene (entries 4−8). In all cases, the results were very similar to those observed under conventional heating conditions. In particular, it was not possible to identify a major reaction product. Eventually, ethylene glycol was tested (entries 9 and 10). This solvent has a very high loss factor⁵⁵ and should therefore ensure particularly efficient conversion of microwave energy into heat. Indeed, TLC indicate[d](#page-10-0) the formation of a main product and a significantly reduced number of side products. Irrespective of the reaction time, the isolated yield of the major product 14, obtained after column chromatography on silica, is rather low, which might at least in part be explained by loss of material due to the high polarity of the product.

The spectroscopic data of the isolated product 14 were not in agreement with the structure of phthalazine 13 or a dihydrophthalazine 12. In particular, HRMS leads to a molecular formula of $C_{16}H_{12}O_2N$, which suggests the incorporation of 1 equiv of hydrazine and condensation of 1 equiv of water and methanol. ¹H NMR spectroscopy shows the presence of two singlets at 5.83 and 6.22 ppm, which are connected to two tertiary carbon atoms at 82.2 and 65.9 ppm, respectively. Further NMR-spectroscopical analysis, in particular based on two-dimensional ${}^{1}H-{}^{13}C$ correlation spectroscopy, remained ambiguous but pointed toward the structure of a benzoannellated tricyclic pyrazole derivative. Gratifyingly, we succeeded in obtaining a crystal suitable for single-crystal X-ray structure analysis. The molecular structure of product 14 can be described as a pyrazoloisoindole derivative and is shown in Figure 1. Beyond the molecular structure, crystal structure

Figure 1. Molecular structure of compound 14 (only R-enantiomer shown).

analysis reveals that the two enantiomers of 14 form a centrosymmetric dimer through hydrogen bonding in the solid state. Intermolecular H bonds were observed between the OH group of one molecule and both N atoms of the other molecule, as illustrated in the packing diagram (see the Supporting Information for further details).

A tentative mechanism for the formation of the tricyclic [condensation product](#page-9-0) 14 is outlined below. Cinnamate 10a reacts with hydrazine in a conjugate addition and subsequent condensation of methanol to the pyrazolidinone 15. Literature precedence for this type of addition−condensation sequence exists.^{56,57} In the next step, 15 cyclizes to a hemiaminal 16, which eventually undergoes a sequence of deprotonation, 1,3-

The Journal of Organic Chemistry Featured Article 30 and 2008 and 200

hydride shift, and dehydration. An alternative scenario starting with the formation of a hydrazone from 10a and subsequent conjugate addition−methanol condensation would also be conceivable. In any case, however, a 1,3-hydride shift must be involved (Scheme 4).

Scheme 4. Tentative Mechanism for the Formation of Pyrazoloisoindole 14

Matsuda−Heck Reaction of o-Acylarene Diazonium Salts 9 with Styrenes. The stilbene pattern is present in important bioactive natural products, 58,59 synthetic drugs, 60 and fluorescent dyes.⁶¹ Scattered examples for the synthesis of stilbenes via Matsuda−Heck arylati[on o](#page-10-0)f styrenes hav[e b](#page-10-0)een reported over t[he](#page-10-0) years, $35,62,63$ but systematic investigations have not been performed until recently.^{34,64,65} For example, Felpin and co-workers [reporte](#page-10-0)d good yields and high Eselectivities of stilbene products at very lo[w cataly](#page-10-0)st loadings for the Pd-catalyzed arylation of styrenes substituted with an electron-withdrawing group, i.e., aryl acrylates.⁶⁴ In contrast, we found that simple styrenes are often surprisingly unreactive toward electron-rich methoxyarene diaz[on](#page-10-0)ium salts, in particular under base-free conditions, resulting in low yields and undesired side reactions such as hydrodediazonation.³⁴ This observation prompted us to investigate the Matsuda− Heck reaction of styre[ne](#page-10-0)s and electron-deficient o-acylarene diazonium salts 9 for comparison. Diazoniums salts 9a−c,f,g,i and styrene (17a), 4-chlorostyrene (17b), and 4-methoxystyrene (17c), respectively, were chosen for this study. In all experiments, the precatalyst $Pd(OAc)_2$ and the base-free conditions established previously for the coupling with methyl acrylate were used (Table 4).

All Matsuda−Heck reactions of o-acylarene diazonium salts 9 and 4-methoxystyrene (17c) were unsuccessful and resulted in the formation of complex mixtures. Via GC−MS analysis of the crude reaction mixtures we could identify the hydrodediazonation product as one component. In contrast, the less electronrich styrene (17a) and 4-chlorostyrene (17b) underwent the coupling with all o-acylarene diazonium salts tested in good to excellent yields and E-selectivities higher than 95:5. Notably, the isolated yields of these transformations significantly exceeded those previously reported by $us³⁴$ for the reactions of 17a,b with the more electron-rich o -, m -, and p methoxyarene diazonium salts.

Suzuki−Miyaura Coupling of o-Acylarene Diazonium Salts 9 with Arene Trifluoroborates. Genet and co-workers described the first Suzuki−Miyaura coupling of arene

Table 4. Matsuda−Heck Reaction of Diazonium Salts 9 and Styrenes 17

	R^2 R ¹ 9	N_2BF_4	R^3 17 (1.2 equiv.) Pd(OAc) ₂ (5 mol-%) methanol, 20°C, 12 h	$\rm R^1$	R^2 18	R^3		
entry	9	R^1	R^2	17	R^3	18 (yield, %)		
$\mathbf{1}$	9a	Н	Ph	17a	Н	18aa (96)		
$\mathbf{2}$	9a	Н	Ph	17 _b	Cl	18ab (95)		
3	9a	H	Ph	17c	OMe	18ac (a)		
$\overline{4}$	9b	Н	p -C ₆ H ₄ OMe	17a	H	18ba (86)		
5	9b	H	p -C ₆ H ₄ OMe	17 _b	Cl	18bb (86%)		
6	9b	Н	p -C ₆ H ₄ OMe	17c	OMe	18bc (a)		
7	9с	H	p -C ₆ H ₄ Cl	17a	H	18ca (78)		
8	9с	H	p -C ₆ H ₄ Cl	17b	Cl	18 $cb(80)$		
9	9c	H	p -C ₆ H ₄ Cl	17c	OMe	18cc (a)		
10	9f	Н	CH ₂ CH ₂ CH ₃	17a	Н	18fa (57)		
11	9f	H	CH ₂ CH ₂ CH ₃	17 _b	Cl	18fb (63)		
12	9f	H	CH ₂ CH ₂ CH ₃	17c	OMe	18 fc (a)		
13	9g	OMe	Ph	17a	Н	18ga (70)		
14	9g	OMe	Ph	17 _b	Cl	18gb (75)		
15	9g	OMe	Ph	17c	OMe	18 $gc(a)$		
13	9i	Cl	Ph	17a	H	18ia (80)		
14	9i	Cl	Ph	17 _b	Cl	18ib (75)		
15	9i	Cl	Ph	17c	OMe	18ic (a)		
^a Complex mixture of products, hydrodediazonation product detected								

Complex mixture of products; hydrodediazonation product detected by GC−MS.

diazonium salts using boronic acids as coupling partners and $Pd(OAc)_2$ as the catalyst under base- and ligand-free conditions.⁶⁶ They discovered that high yields can be obtained in dioxane, while the yields in methanol are only mediocre. In contrast, S[en](#page-10-0)gupta and Bhattacharyya reported almost simultaneously that methanol is a suitable solvent for the coupling of arene diazonium salts and arene boronic acids, although significantly higher catalyst loadings had to be applied. 67 Other reports describing the suitability of alcohols as solvents were published later.⁶⁸⁻⁷⁰ Shortly after their seminal repo[rt,](#page-10-0) Genet and co-workers found that organotrifluoroborates⁷¹⁻⁷⁵ are superior coupli[ng re](#page-11-0)agents under otherwise identical conditions.⁷⁶ More recently, we investigated the Su[zuk](#page-11-0)i[−](#page-11-0) Miyaura coupling of organotrifluoroborates and a 4-methoxybenzene [d](#page-11-0)iazonium salt in comparison with 4-phenol diazonium salt and found that coupling reactions of the latter were advantageously performed in methanol rather than dioxane.⁷⁷

We started this part of the investigation by comparing the Suzuki−[M](#page-11-0)iyaura coupling of o-benzoylbenzene diazonium salt 9a with phenylboronic acid (19a′) and with potassium phenyltrifluoroborate (19a), respectively (Scheme 5). With 19a′ in methanol, the expected biphenyl 20aa was formed together with a considerable amount of methyl ether [21](#page-5-0), which was identified by comparison of its spectroscopic data with those reported previously in the literature.⁷⁸ The formation of this solvolysis product was fully suppressed when the analogous potassium organotrifluoroborate 19a was [use](#page-11-0)d. Performing the coupling of 9a and 19a in dioxane instead of methanol worked equally well and gave 20aa in comparable selectivity.

We applied the conditions established for the cross coupling of 9a and 19a to other o-acyl diazonium salts 9 and organotrifluoroborates 19 (Table 5). In most cases, good yields and selectivities of biaryl products 20 were obtained in methanol and in dioxane.

■ CONCLUSIONS

In summary, we report the efficient recycling of a catalyst directing group for oxidative Pd2+-catalyzed C−H activation reactions by conversion into a leaving group for subsequent nonoxidative Pd(0)-catalyzed coupling reactions. Specifically, an acetamide group was used to enable a regioselective orthoacylation through C−H activation, which was then converted into a diazonium group by a deacetylation−diazotation sequence. Pd(0)-catalyzed coupling of the arene diazonium salts thus formed proceeds effectively with styrenes, acrylates, and organotrifluoroborates. The sequence disclosed in this

work leads eventually to structurally diverse ortho-substituted aromatic ketones from simple acetanilides.

EXPERIMENTAL SECTION

General Methods. All experiments were conducted in dry reaction vessels under an atmosphere of dry nitrogen. Solvents were purified by standard procedures. ¹H NMR spectra were obtained at 300 MHz in or at 500 MHz CDCl₃ with CHCl₃ (δ = 7.26 ppm) as an internal standard. Coupling constants are given in hertz. All ¹³C NMR spectra were recorded with broadband decoupling at 75 MHz or at 126 MHz in CDCl₃ with CDCl₃ (δ = 77.0 ppm) as an internal standard. Whenever the solubility of the sample was insufficient in $CDCI₃$, $DMSO-d_6$ was used (DMSO- d_5 as internal standard for ¹H NMR spectroscopy, δ = 2.50 ppm, DMSO- d_6 as internal standard for ¹³C NMR spectroscopy, δ = 39.5 ppm). IR spectra were recorded as ATR-FTIR spectra. Wavenumbers (ν) are given in cm⁻¹. The peak intensities are defined as strong (s), medium (m), or weak (w). Lowand high-resolution mass spectra were obtained by EI-TOF or ESI-TOF. Microwave reactions were carried out in an Anton-Paar monowave-300 reactor at 150 °C (monowave, maximum power 850 W, temperature control via IR-sensor, vial volume: 20 mL). o-Acyl acetanilides 8a–d and f–j¹⁴ and diazonium salt 9h⁷⁹ have previously been described in the literature. Diazonium salts $9a, ^{80}$ $9b, ^{81}$ and $9f^{82}$ were mentioned in previo[us](#page-10-0) publications but not c[ha](#page-11-0)racterized.

N-(2-(3-Methylbutanoyl)phenyl)acetamide (8e). Ace[tan](#page-11-0)ilide [6a](#page-11-0) $(3.00 \text{ g}, 22.2 \text{ mmol})$ was suspended in water (20 mL) , and $Pd(OAc)_2$ (249 mg, 5 mol %), Na−lauryl sulfate (320 mg, 5 mol %), and $CF₃COOH$ (0.44 mL, 5.7 mmol, 0.26 equiv) were added. To this mixture were added isovaleraldehyde (6.30 mL, 44.4 mmol, 2.0 equiv) and t-BuOOH (70 wt % solution in water, 5.72 g, 44.4 mmol), and the mixture was stirred for 24 h at ambient temperature and then extracted with ethyl acetate (3×, 20 mL each). The combined organic extracts were washed with water, dried with MgSO₄, filtered, and evaporated. The residue was purified by chromatography on silica using a hexane− ethyl acetate mixture $(1:1)$ to furnish 8e $(3.00 \text{ g}, 13.7 \text{ mmol}, 62\%)$: colorless solid; mp 73 °C; ¹H NMR (300 MHz, CDCl₃) δ 11.47 (s, 1H), 8.45 (d, J = 8.5 Hz, 1H), 7.58 (dd, J = 8.1, 1.3 Hz, 1H), 7.17 $(ddd, J = 8.6, 8.6, 1.3 Hz, 1H), 6.76 (ddd, J = 8.1, 8.1, 1.0 Hz, 1H),$ 2.55 (d, J = 6.8 Hz, 2H), 1.94 (sept., J = 6.7 Hz, 1H), 1.91 (s, 3H),

Table 5. Suzuki−Miyaura Coupling of o-Acyldiazonium Salts 9 and Organotrifluoroborates 19

0.72 (d, J = 6.7 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 204.6, 169.1, 141.2, 134.7, 131.0, 122.2, 121.8, 120.7, 48.8, 25.5, 25.4, 22.8; IR (ATR) ν 2951 (m), 1518 (s), 1449 (s), 1360 (s), 761 (s); HRMS (EI) calcd for $C_{13}H_{17}O_2N$ [M⁺] 219.1254, found 219.1259; MS (EI) m/z 219 (18), 162 (100), 144 (18), 120 (74), 92 (21). Anal. Calcd for $C_{13}H_{17}NO_2$ (219.28): C, 71.2; H, 7.8; N, 6.4. Found: C, 71.1; H, 7.7; N, 6.5.

General Procedure for the Synthesis and Isolation of Arene Diazonium Salts 9. To a solution of acetanilide 8 (1.0 mmol) in dry and degassed methanol (5.0 mL) was added BF_3 ·CH₃OH (3.0 mmol) . The solution was heated to reflux for 16 h and then cooled to 0 or −21 °C, as indicated in Table 1. t-BuONO (103 mg, 1.0 mmol; 155 mg, 1.5 mmol; 206 mg, 2.0 mmol as indicated in Table 1) was added, and stirring at the respective temperature was continued for 2 h. The resulting precipitate of t[he](#page-2-0) corresponding arene diazonium salt 9 was filtered through a Bü chner funnel, washed with a [min](#page-2-0)imum amount of cold MTBE, and dried in vacuo.

2-Benzoylbenzenediazonium Tetrafluoroborate $(9a)$.⁸⁰ Following the general procedure, 8a (119 mg, 0.50 mmol) was converted to 9a (134 mg, 0.46 mmol, 90%): orange solid; ¹ H NMR [\(5](#page-11-0)00 MHz, DMSO- d_6) δ 9.03 (dd, J = 8.2, 1.1 Hz, 1H), 8.37 (ddd, J = 7.7, 7.7, 1.1 Hz, 1H), 8.27 (ddd, $J = 8.0$, 8.0, 1.2 Hz, 1H), 8.19 (dd, $J = 7.8$, 1.1 Hz, 1H), 7.89 (dm, J = 8.2 Hz, 2H), 7.83 (tm, J = 7.5 Hz), 7.68 (dd, J = 8.2, 7.5 Hz); ¹³C NMR (126 MHz, DMSO- d_6) δ 189.9, 140.2, 137.1, 136.2, 134.6, 134.3, 133.9, 133.7, 130.7, 128.9, 115.6; IR (ATR) ν 3114 (w), 2290 (m), 1660 (m), 1274 (s), 1036 (s); HRMS (ESI) calcd for $C_{13}H_9N_2O$ [M⁺] 209.0715, found 209.0721; MS (ESI) m/z 196 (41), 181 (100), 144 (15), 98 (31).

2-(4-Methoxybenzoyl)benzenediazonium Tetrafluoroborate $(9b)$.⁸¹ Following the general procedure, 8b $(269 \text{ mg}, 1.00 \text{ mmol})$ was converted to 9b (309 mg, 0.95 mmol, 95%): yellow solid; ¹H NM[R \(](#page-11-0)500 MHz, DMSO- d_6) δ 9.00 (dd, J = 8.2, 1.1 Hz, 1H), 8.35 (ddd, J = 7.7, 7.7, 1.2 Hz, 1H), 8.24 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 8.19 (dd, J = 7.8, 1.1 Hz, 1H), 7.89 (dm, J = 8.9 Hz, 2H), 7.20 (dm, J = 8.9 Hz), 3.91 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 188.1, 164.4, 140.1, 138.0, 136.1 133.9, 133.4, 133.3, 126.5, 115.7, 114.4, 55.9; IR (ATR) ν 3110 (w), 2293 (m), 1587 (s), 1269 (s), 1041 (s); HRMS (ESI) calcd for $C_{14}H_{11}N_2O_2$ [M⁺] 239.0821, found 239.0822; MS (ESI) m/z 239 (13), 213 (79), 211 (100), 196 (18).

2-(4-Chlorobenzoyl)benzenediazonium Tetrafluoroborate (9c). Following the general procedure, 8c (1.50 g, 5.4 mmol) was converted to 9c (1.60 g, 4.9 mmol, 90%): colorless solid; ¹H NMR (500 MHz, DMSO- d_6) δ 9.02 (dd, J = 8.1, 1.2 Hz, 1H), 8.37 (ddd, J = 7.7, 7.7, 1.3 Hz, 1H), 8.27 (ddd, J = 7.9, 7.9, 1.3 Hz, 1H), 8.20 (dd, J = 7.7, 1.2 Hz, 1H), 7.89 (dm, J = 8.5 Hz, 2H), 7.75 (dm, J = 8.5 Hz, 2H); ¹³C NMR $(126 \text{ MHz}, \text{ DMSO-}d_6) \delta$ 188.9, 140.2, 139.5, 136.9, 136.2, 134.4, 133.6, 132.8, 132.6, 129.1, 115.5; IR (ATR) ν 3100 (w), 2284 (m), 1658 (s), 1285 (s), 1027 (s); HRMS (ESI) calcd for $C_{13}H_8N_2OCl$ [M⁺] 243.0352, found: 243.0331; MS (ESI) m/z 243 (8), 217 (41), 215 (100), 196 (23).

2-(4-Fluorobenzoyl)benzenediazonium Tetrafluoroborate (9d). Following the general procedure, 9d (1.50 g, 5.8 mmol) was converted to 9d (1.65 g, 5.2 mmol, 90%): colorless solid; ¹H NMR (300 MHz, DMSO- d_6) δ 9.02 (dd, J = 8.1, 1.1 Hz, 1H), 8.37 (ddd, J = 7.7, 7.7, 1.2 Hz, 1H), 8.26 (ddd, J = 7.9, 7.9, 1.3 Hz, 1H), 8.20 (dd, J = 7.7, 1.2 Hz, 1H), 8.17−7.92 (m, 2H), 7.51 (ddm, J = 8.8, 8.8 Hz, 2H); 13C NMR $(126 \text{ MHz}, \text{ DMSO-}d_6)$ δ 188.8, 165.8 (d, J = 254.2 Hz), 140.4, 137.3, 136.4, 134.4, 134.0 (d, $J = 9.9$ Hz), 133.8, 130.8, 116.3 (d, $J = 22.3$ Hz), 115.6; ¹⁹F NMR (282 MHz, DMSO- d_6) δ –103.3 (s), –148.2 (s); IR (ATR) ν 3100 (w), 2284 (m), 1658 (s), 1285 (s), 1027 (s); HRMS (ESI) calcd for $C_{13}H_8N_2$ OF $[M^+]$ 227.0621, found 227.0610; MS (ESI) m/z 227 (10), 201 (26), 199 (100), 196 (36).

2-Butyrylbenzenediazonium Tetrafluoroborate $(9f)^{82}$ Following the general procedure, 8f (103 mg, 0.50 mmol) was converted to 9f (126 mg, 0.48 mmol, 96%): colorless solid; ¹ H NM[R \(](#page-11-0)500 MHz, DMSO- d_6) δ 8.94 (dd, J = 8.1, 1.0 Hz, 1H), 8.62 (dd, J = 7.6, 0.7 Hz, 1H), 8.40 (ddd, J = 7.8, 7.8, 1.1 Hz, 1H), 8.23 (ddd, J = 8.1, 8.1, 1.0 Hz, 1H), 3.20 (t, J = 7.0 Hz, 2H), 1.69 (sext, J = 7.3 Hz, 2H), 1.00 (t, J $= 7.3$ Hz, 3H); ¹³C NMR (126 MHz, DMSO-d₆) δ 196.5, 140.8, 136.2, 135.9, 134.8, 132.3, 113.9, 16.5, 13.4; IR (ATR) ν 3111 (w), 1700

(m), 1211 (m), 1042 (s), 786 (m); HRMS (ESI) calcd for $C_{10}H_{11}N_2O$ [M⁺] 175.0871, found 175.0876; MS (ESI) m/z 175 (100), 161 (14), 147 (48), 122 (32).

2-Benzoyl-5-methoxybenzenediazonium Tetrafluoroborate (9g). Following the general procedure, 8g (1.00 g, 3.7 mmol) was converted to 9g (1.20 g, 3.6 mmol, 97%): colorless solid; ¹H NMR (500 MHz, DMSO- d_6) δ 8.73 (d, J = 2.7 Hz, 1H), 8.11 (d, J = 8.8 Hz, 1H), 7.9 $(dd, J = 8.8, 2.7 \text{ Hz}, 1\text{H}), 7.85–7.78 \text{ (m, 3H)}, 7.67 \text{ (dd, } J = 7.8, 7.8 \text{ Hz},$ 2H), 4.04 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 189.3, 162.0, 135.4, 134.4, 134.3, 130.4, 129.5, 128.9, 124.7, 121.6, 117.2, 57.5; IR (ATR) ν 3099 (w), 2280 (m), 1654 (m), 1593 (m), 1255 (s); HRMS (ESI) calcd for $C_{14}H_{11}N_2O_2$ [M⁺] 239.0821, found 239.0828.

2-Benzoyl-5-methylbenzenediazonium Tetrafluoroborate (9h).⁷⁹ Following the general procedure, 8h (100 mg, 0.40 mmol) was converted to $9h$ (100 mg, 0.33 mmol, 82%): colorless solid; ¹H N[MR](#page-11-0) $(500 \text{ MHz}, \text{DMSO-}d_6) \delta 8.87 \text{ (s, 1H)}, 8.18 \text{ (dm, } J = 8.1 \text{ Hz}, 1H), 8.09$ $(d, J = 8.0 \text{ Hz}, 1H), 7.86 \text{ (dm, } J = 8.0 \text{ Hz}, 2H), 7.82 \text{ (tm, } J = 7.5 \text{ Hz},$ 1H), 7.67 (dd, J = 7.8, 7.8 Hz, 2H), 2.61 (s, 3H); ¹³C NMR (126 MHz, DMSO-d₆) δ 190.6, 146.5, 141.4, 136.6, 135.6, 135.3, 134.9, 134.5, 131.4, 129.8, 116.3, 21.7; IR (ATR) ν 3111 (w), 2282 (m), 1652 (m), 1274 (m), 1021 (s); HRMS (ESI) calcd for $C_{14}H_{11}N_2O$ [M⁺] 223.0866, found 223.0864.

2-Benzoyl-5-chlorobenzenediazonium Tetrafluoroborate (9i). Following the general procedure, 8i (100 mg, 0.37 mmol) was converted to 9i (95 mg, 0.29 mmol, 79%): colorless solid; 1 H NMR $(500 \text{ MHz}, \text{DMSO-}d_6) \delta 9.24 \text{ (d, } J = 2.1 \text{ Hz}, 1H), 8.47 \text{ (dd, } J = 8.4, 2.2)$ Hz, 1H), 8.19 (d, J = 8.4 Hz, 1H), 7.88 (dm, J = 8.3 Hz, 2H), 7.83 (tm, $J = 7.5$ Hz, 1H), 7.68 (dd, $J = 8.2$, 7.5, 2H); ¹³C NMR (126 MHz, $DMSO-d_6$) δ 189.0, 140.2, 137.9, 135.9, 135.0, 134.8, 134.7, 133.7, 130.7, 129.3, 117.4; IR (ATR) ν 3104 (w), 2288 (m), 1653 (m), 1282 (m), 1019 (s); HRMS (ESI) calcd for $C_{13}H_8N_2OCl$ [M⁺] 243.0320, found 243.0315.

General Procedure for the Synthesis of o-Acyl Cinnamates 10 from Arene Diazonium Salts 9 (Conditions A). To a solution of the appropriate arene diazonium salt 9 (1.0 mmol) in anhydrous methanol (3 mL) was added $Pd(OAc)_2$ (11.2 mg, 5 mol %). The solution was stirred for 0.25 h at ambient temperature, followed by addition of methyl acrylate (172 mg, 2.0 mmol). Stirring was continued at this temperature for 12 h. Water (15 mL) was added, and the mixture was extracted three times with ethyl acetate (20 mL for each extraction). The combined organic layers were dried with MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica using hexanes−MTBE mixtures as eluent.

General Procedure for the Synthesis of o-Acyl Cinnamates 10 from Acetanilides 8 via Deacetylation−Diazotation− Coupling (Conditions B). To a solution of the appropriate o-acyl acetanilide 8 (1.0 mmol) in dry and degassed methanol (6 mL) was added BF_3 ·CH₃OH (3.0 mmol, 324 μ L). The solution was stirred at 65 °C for 16 h and then cooled to 0 °C (ice−water bath) or −21 °C (ice−salt bath) as indicated in Table 1. t-BuONO (103 mg, 1.0 mmol; 155 mg, 1.5 mmol; 206 mg, 2.0 mmol as indicated in Table 1) was added, and stirring at the respective temperature was continued for 0.5 h, followed by addition of $Pd(OAc)₂$ [\(5](#page-2-0) mol %, 11.2 mg) and warming to ambient temperature. After the mixture was stirred for [0.](#page-2-0)25 h, methyl acrylate (172 mg, 2.0 mmol) was added, and the solution was stirred for 12 h at ambient temperature. Water (15 mL) was added, and the mixture was extracted three times with ethyl acetate (20 mL for each extraction). The combined organic layers were dried with MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica using a hexanes−MTBE mixture as eluent.

(E)-Methyl 3-(2-Benzoylphenyl)acrylate (10a).⁴⁹ Conditions A: Following the general procedure, 9a (100 mg, 0.34 mmol) was converted to 10a (84 mg, 0.32 mmol, 93%). Con[ditio](#page-10-0)ns B: following the general procedure, 8a (239 mg, 1.00 mmol) was converted to 10a (260 mg, 0.98 mmol, quant): yellowish oil; ¹ H NMR (300 MHz, CDCl₃) δ 7.80−7.68 (m, 4H), 7.57 (tm, J = 7.4 Hz, 1H), 7.50 (m, 1H), 7.47−7.36 (4H), 6.36 (d, J = 15.9 Hz, 1H), 3.69 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 197.1, 166.7. 142.0, 139.4, 137.3, 133.9,

133.5, 130.7, 130.3, 129.2, 129.1, 128.5, 127.3, 120.5, 51.7; IR (ATR) ν 3062 (w), 2950 (w), 1715 (s), 1267 (s), 1172 (s); HRMS (ESI) calcd for $C_{17}H_{15}O_3$ [M + H]⁺ 267.1021, found 267.1022.

(E)-Methyl 3-(2-Benzoyl-4-methoxyphenyl)acrylate (10b). Conditions A: Following the general procedure, 9b (100 mg, 0.31 mmol) was converted to 10b (80 mg, 0.27 mmol, 88%). Conditions B: Following the general procedure, 8b (269 mg, 1.00 mmol) was converted to 10b (202 mg, 0.21 mmol, 68%): yellow solid; mp 108 $^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 7.80 (dm, J = 9.0 Hz, 2H), 7.78 $(d, J = 7.5 \text{ Hz}, 1\text{H}), 7.76 \text{ (d, } J = 15.9 \text{ Hz}, 1\text{H}), 7.53 \text{ (dd, } J = 7.5, 7.5)$ Hz, 1H), 7.47 (ddm, J = 7.5, 7.5 Hz, 1H), 7.41 (dm, J = 7.5 Hz, 1H), 6.95 (dm, $J = 9.0$ Hz, 2H), 6.40 (d, $J = 15.9$ Hz, 1H), 3.90 (s, 3H), 3.75 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 195.9, 166.9, 164.2, 142.2, 140.3, 133.6, 133.0, 130.5, 130.3, 129.4, 128.9, 127.3, 120.6, 114.1, 55.8, 51.9; IR (ATR) ν 2951 (w), 2840 (w), 1595 (s), 1253 (s), 1149 (s); HRMS (ESI) calcd for $C_{18}H_{17}O_4$ [M + H]⁺ 297.1127, found 297.1100; MS (ESI) m/z 297 (100), 294 (13), 265 (10), 196 (18). Anal. Calcd for $C_{18}H_{16}O_4$ (296.32): C, 73.0; H, 5.4. Found: C, 73.0; H, 5.2.

(E)-Methyl 3-(2-Benzoyl-4-chlorophenyl)acrylate (10c). Conditions A: Following the general procedure, 9c (93 mg, 0.28 mmol) was converted to 10c (79 mg, 0.26 mmol, 93%). Conditions B: Following the general procedure, 8c (273 mg, 1.00 mmol) was converted to 10c (294 mg, 0.98 mmol, quant): yellow solid; mp 98− 100 °C; ¹ H NMR (300 MHz, CDCl3) δ 7.77−7.68 (m, 4H), 7.53 (ddm, J = 7.5, 7.5 Hz, 1H), 7.48–7.34 (m, 4H), 6.36 (d, J = 15.9 Hz, 1H), 3.72 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.1, 166.9, 141.9, 140.4, 139.1, 135.9, 134.1, 131.9, 131.2, 129.5, 129.3, 129.2, 127.6, 121.0, 51.9; IR (ATR) ν 3211 (w), 2951 (w), 1719 (s), 1582 (s), 1163 (s); HRMS (ESI) calcd for $C_{17}H_{14}O_3Cl$ [M + H]⁺ 301.0631, found 301.0628; MS (ESI) m/z 301 (36), 202 (51), 196 (100), 176 (64). Anal. Calcd for $C_{17}H_{13}ClO_3$ (300.74): C, 67.9; H, 4.4. Found: C, 67.8; H, 4.3.

(E)-Methyl 3-(2-Benzoyl-4-fluorophenyl)acrylate (10d). Conditions A: Following the general procedure, 9d (100 mg, 0.32 mmol) was converted to 10d (76 mg, 0.27 mmol, 84%). Conditions B: Following the general procedure, 9d (257 mg, 1.00 mmol) was converted to $10\bar{d}$ (280 mg, 0.98 mmol, quant): yellowish oil; $^1{\rm H}$ NMR $(300 \text{ MHz}, \text{CDCl}_3)$ δ 7.87–7.76 (m, 2H), 7.72 (d, J = 15.9 Hz, 1H), 7.72 (d, J = 7.5 Hz, 1H), 7.52 (ddd, J = 7.5, 7.5, 1.6 Hz, 1H), 7.43 $(ddd, J = 7.5, 7.5, 1.2 Hz, 1H$, 7.38 $(dd, J = 7.5, 1.5 Hz, 1H$, 7.22 (ddm, J = 9.0, 9.0 Hz, 2H), 6.36 (d, J = 15.9 Hz, 1H), 3.71 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 195.7, 166.9, 166.2 (J = 255 Hz), 164.5, 141.9, 139.3, 134.0, 133.9, 133.2 ($J = 9.0$ Hz), 131.0, 129.3 ($J =$ 21.8 Hz), 127.5, 120.9, 116.0 $(J = 21.8 \text{ Hz})$, 51.9; IR (ATR) ν 2951 (w), 1716 (s), 1595 (s), 1270 (s), 1148 (s); HRMS (ESI) calcd for $C_{17}H_{13}O_3F$ [M + H]⁺ 285.0927, found 285.0918; MS (ESI) m/z 383 (100), 294 (20), 285 (72), 196 (59).

(E)-Methyl 3-(2-(3-Methylbutanoyl)phenyl)acrylate (10e). Conditions B: Following the general procedure, 8e (100 mg, 0.45 mmol) was converted to 10e (108 mg, 0.44 mmol, quant): yellow solid; mp 181−184 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, J = 15.9 Hz, 1H), 7.64 (dd, J = 7.5, 1.5 Hz, 1H), 7.57 (dd, J = 7.5, 1.4 Hz, 1H), 7.47 $(ddd, J = 7.5, 7.5, 1.4 Hz, 1H), 7.42 (ddd, J = 7.5, 7.5, 1.4 Hz, 1H),$ 6.27 (d, J = 15.9 Hz, 1H), 3.77 (s, 3H), 2.76 (d, J = 6.9 Hz, 2H), 2.25 (nonet, J = 6.7 Hz, 1H), 0.96 (d, J = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl3) δ 203.6, 166.9, 143.8, 139.3, 134.4, 131.5, 129.4, 128.4, 128.2, 120.4, 51.7, 50.5, 25.2, 22.7; IR (ATR) ν 2955 (m), 1716 (s), 1682 (s), 1273 (s), 1170 (s); HRMS (EI) calcd for $C_{15}H_{18}O_3$ [M⁺] 246.1256, found 246.1242; MS (EI) m/z 246 (23), 187 (100), 145 (27), 115 (23). Anal. Calcd for $C_{15}H_{18}O_3$ (246.30): C, 73.2; H, 7.4. Found: C, 72.8; H, 7.3.

(E)-Methyl 3-(2-Butyrylphenyl)acrylate (10f). Conditions A: Following the general procedure, 9f (70 mg, 0.27 mmol) was converted to 10f (61 mg, 0.26 mmol, quant). Conditions B: Following the general procedure, 8f (103 mg, 0.50 mmol) was converted to 10f $(70 \text{ mg}, 0.30 \text{ mmol}, 60\%)$: yellowish oil; ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, J = 15.9 Hz, 1H), 7.66 (dd, J = 7.3, 1.4 Hz, 1H), 7.56 (dd, J $= 7.3, 1.5$ Hz, 1H), 7.48 (ddd, J = 7.3, 7.3, 1.3 Hz, 1H), 7.42 (ddd, J = 7.3, 7.3, 1.4 Hz, 1H), 6.26 (d, J = 15.9 Hz, 1H), 3.78 (s, 3H), 2.87 (t, J = 7.3 Hz, 2H), 1.73 (sext, J = 7.3 Hz, 2H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 203.8, 166.9, 143.9, 138.9, 134.5, 131.5, 129.4, 128.4, 128.2, 120.4, 51.7, 43.5, 17.8, 13.8; IR (ATR) ν 2959 (w), 1716 (s), 1682 (s), 1273 (s), 1169 (s); HRMS (EI) calcd for $C_{14}H_{16}O_3$ [M⁺] 232.1099, found 232.1105; MS (EI) m/z 232 (15), 173 (100), 131 (14), 151 (14). Anal. Calcd for $C_{14}H_{16}O_3$ (232.28): C, 72.4; H, 6.9. Found: C, 71.9; H, 6.5.

(E)-Methyl 3-(2-Benzoyl-5-methoxyphenyl)acrylate (10g). Conditions A: Following the general procedure, 9g (100 mg, 0.31 mmol) was converted to 10g (80 mg, 0.27 mmol, 88%). Conditions B: Following the general procedure, 8g (134 mg, 0.50 mmol) was converted to 10g (118 mg, 0.40 mmol, 80%): orange-yellow solid; mp 100−104 °C; ¹ H NMR (300 MHz, CDCl3) δ 7.89 (d, J = 15.9 Hz, 1H), 7.74 (dm, J = 8.5 Hz, 1H), 7.55 (tt, J = 7.4, 1.3 Hz, 1H), 7.51− 7.35 (m, 3H), 7.17 (d, J = 2.5 Hz, 1H), 6.91 (dd, J = 8.5, 2.5 Hz, 1H), 6.34 (d, J = 15.9 Hz, 1H), 3.38 (s, 3H), 3.72 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.3, 166.7, 161.6, 142.8, 138.1, 137.1, 132.9, 132.4, 131.5, 130.2, 128.4, 120.6, 114.3, 112.7, 55.6, 51.7; IR (ATR) ν 2949 (w), 1715 (s), 1596 (s), 1227 (s), 1169 (s); HRMS (EI) calcd for $C_{18}H_{16}O_4$ [M⁺] 296.1049, found 296.1033; MS (EI) m/z 296 (13), 237 (100), 194 (12), 165 (10). Anal. Calcd for $C_{18}H_{16}O_4$ (296.32): C, 72.9; H, 5.4. Found: C, 72.9; H, 5.4.

(E)-Methyl 3-(2-Benzoyl-5-methylphenyl)acrylate (10h). Conditions A: Following the general procedure, 9h (100 mg, 0.32 mmol) was converted to 10h (77 mg, 0.27 mmol, 86%). Conditions B: Following the general procedure, 8h (253 mg, 1.00 mmol) was converted to 10h (158 mg, 0.56 mmol, 56%): yellow solid; mp 118− 122 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, J = 15.9 Hz, 1H), 7.75 (dm, $J = 8.4$ Hz, 2H), 7.55 (tm, $J = 7.4$ Hz, 1H), 7.51 (s, 1H), 7.43 (dd, J = 8.4, 7.4 Hz, 2H)), 7.32 (d, J = 7.8 Hz, 1H), 7.22 (d, J = 7.8 Hz. 1H). 6.35 (d. J = 15.9 Hz, 1H), 3.71 (s, 3H), 2.42 (s, 3H); ¹³C 7.8 Hz, 1H), 6.35 (d, $J = 15.9$ Hz, 1H), 3.71 (s, 3H), 2.42 (s, 3H); NMR (75 MHz, CDCl₃) δ 197.1, 166.8, 142.4, 141.2, 137.7, 136.5, 134.3, 133.3, 130.3, 129.8, 129.7, 128.5, 127.9, 120.2, 51.7, 21.5; IR (ATR) ν 2950 (w), 1716 (s), 1655 (s), 1274 (s), 1170 (s); HRMS (EI) calcd for $C_{18}H_{16}O_3$ [M⁺] 280.1099, found 280.1093; MS (EI) $m/$ z 280 (23), 222 (13), 221 (100), 178 (10). Anal. Calcd for $C_{18}H_{16}O_3$ (280.32): C, 77.1; H, 5.8. Found: C, 76.8; H, 5.7.

(E)-Methyl 3-(2-Benzoyl-5-chlorophenyl)acrylate (10i). Conditions A: Following the general procedure, 9i (100 mg, 0.30 mmol) was converted to 10i (89 mg, 0.29 mmol, quant). Conditions B: Following the general procedure, 8i (273 mg, 1.00 mmol) was converted to 10i (295 mg, 0.98 mmol, quant): colorless solid; mp 108−113 °C; ¹ H NMR (300 MHz, CDCl3) δ 7.75 (d, J = 7.5 Hz, 2H), 7.70 (d, J = 15.8 Hz, 1H), 7.68 (s, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.45 (dd, J = 7.7, 7.7 Hz, 2H), 7.42–7.31 (m, 2H), 6.35 (d, J = 15.9 Hz, 1H), 3.71 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 196.2, 166.5, 140.9, 137.7, 137.3, 136.2, 133.9, 130.9, 130.5, 129.3, 128.9, 128.9, 127.5, 121.9, 52.0; IR (ATR) ν 2951 (w), 1721 (s), 1661 (s), 1279 (s), 1196 (s); HRMS (EI) calcd for $C_{17}H_{13}O_3Cl$ $[M^+]$ 300.0553, found 300.0550; MS (EI) m/z 300 (8), 285 (23), 241 (100), 178 (23). Anal. Calcd for $C_{17}H_{13}O_3Cl$ (300.74): C, 67.9; H, 4.4. Found: C,: 67.9; H, 4.1.

(E)-Methyl 3-(2-Benzoyl-4-isopropylphenyl)acrylate (10j). Conditions B: Following the general procedure, 8j (100 mg, 0.36 mmol) was converted to 10j (33 mg, 0.11 mmol, 30%): yellowish oil; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, J = 7.3 Hz, 2H), 7.71 (d, J = 15.9 Hz, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.58 (tm, J = 7.4 Hz, 1H), 7.46 (dd, $J = 7.7, 7.7$ Hz, 2H), 7.37 (dm, $J = 8.2$ Hz, 1H), 7.24 (s, 1H), 6.32 (d, J $= 15.9$ Hz, 1H), 3.69 (s, 3H), 2.92 (sept., J = 6.9 Hz, 1H), 1.23 (d, J = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 197.5, 166.9, 150.5, 141.9, 139.6, 137.4, 133.5, 131.3, 130.4, 128.9, 128.5, 127.3, 127.2, 119.5, 51.6, 33.9, 23.6; IR (ATR) ν 2960 (m), 1718 (s), 1268 (s), 1170 (s), 721 (s); HRMS (EI) calcd for $C_{20}H_{20}O_3$ [M⁺] 308.1412, found 308.1414; MS (EI) m/z 308 (28), 249 (100), 233 (10), 77 (10).

8-Phenyl-3a,8-dihydro-3H-pyrazolo[5,1-a]isoindol-2-ol (14). Compound 10a (100 mg, 0.37 mmol) and hydrazine (24 mg of 80 wt % solution in water, 0.37 mmol) were dissolved in ethylene glycol (5 mL) and irradiated for 0.5 h at 250 °C in a dedicated microwave reactor. The reaction mixture was concentrated under reduced pressure, and the residue was purified by column chromatography

on silica using hexane/ethyl acetate (1:1) to furnish 14 (20 mg, 0.08 mmol, 20%): pale red solid; mp 215 °C; ¹H NMR (500 MHz, DMSO d_6) δ 9.99 (s, 1H), 7.66 (d, J = 7.5 Hz, 1H), 7.40 (ddd, J = 8.2, 8.2, 1.8 Hz, 1H), 7.38−7.24 (m, 5H), 7.08 (d, J = 7.0 Hz, 2H), 6.22 (s, 1H), 5.83 (s, 1H); ¹³C NMR (75 MHz, DMSO- d_6) δ 164.6, 145.1, 144.9, 138.6, 129.9, 128.7, 128.3, 128.0, 127.3, 126.9, 123.7, 120.1, 82.2, 65.9; IR (ATR) ν 2922 (m), 1489 (s), 1088 (w), 747 (s), 697 (m); HRMS (ESI) calcd for $C_{16}H_{12}ON_2$ [M⁺] 248.0950, found 248.0947; MS (EI) m/z 248 (100), 220 (21), 189 (22), 165 (18).

General Procedure for the Synthesis of Stilbenes 18. To a solution of the corresponding arene diazonium salt 9 (1.0 equiv) in anhydrous MeOH (15 mL per mmol of 9) was added $Pd(OAc)_{2}$ (5.0) mol %). The mixture was stirred at ambient temperature for 0.25 h, and the appropriate styrene 17 (1.2 equiv) was added. The solution was stirred for 16 h at ambient temperature, and water (15 mL) was added. The mixture was extracted three times with ethyl acetate (20 mL each), and the combined organic layers were dried with $MgSO_4$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica using hexanes/MTBE $(10:1)$ as eluent.

(E)-Phenyl-(2-styrylphenyl)methanone (18aa). Following the general procedure, 9a (100 mg, 0.34 mmol) and 17a (47 μ L, 0.41 mmol) were converted to 18aa (93 mg, 0.33 mmol, 96%): yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.90–7.81 (m, 3H), 7.65–7.21 (m, 12H), 7.08 (d, J = 16.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.5, 138.2, 138.1, 137.3, 136.8, 133.5, 131.5, 130.8, 130.5, 129.3, 128.8, 128.7, 128.1, 127.0, 126.9, 126.2, 126.1; IR (ATR) ν 3059 (w), 1656 (s), 1490 (m), 1268 (s), 1086 (s); HRMS (EI) calcd for $C_{21}H_{16}O$ [M⁺] 284.1201, found 284.1213; MS (EI) m/z 284 (57), 207 (38), 178 (100), 105 (68), 77 (76).

(E)-(2-(4-Chlorostyryl)phenyl)(phenyl)methanone (18ab). Following the general procedure, 9a (100 mg, 0.34 mmol) and 17b (51 μ L, 0.41 mmol) were converted to 18ab (102 mg, 0.32 mmol, 95%): yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.85−7.75 (m, 3H), 7.62− 7.21 (m, 10H), 7.18 (d, J = 16.2 Hz, 1H), 6.98 (d, J = 16.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 198.4, 138.1, 138.0, 136.6, 135.8, 133.7, 133.5, 130.9, 130.5, 130.1, 129.4, 128.9, 128.7, 128.1, 127.2, 126.9, 126.2; IR (ATR) ν 3058 (w), 1657 (s), 1596 (m), 1448 (s), 1273 (s); HRMS (EI) calcd for $C_{21}H_{15}OCl [M^+]$ 318.0811, found 318.0804; MS (EI) m/z 318 (26), 207 (22), 178 (48), 105 (49), 77 (100).

(E)-(4-Methoxyphenyl)-(2-styrylphenyl)methanone (18ba). Following the general procedure, 9b (100 mg, 0.31 mmol) and 17a (42 μ L, 0.37 mmol) were converted to 18ba (83 mg, 0.26 mmol, 86%): yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.88–7.80 (m, 3H), 7.52 (ddd, J = 8.0, 8.0, 2.2 Hz, 1H), 7.42−7.20 (m, 7H), 7.20 (d, J = 16.2 Hz, 1H), 7.08 (d, $J = 16.2$ Hz, 1H), 6.95 (dm, $J = 8.9$ Hz, 2H), 3.88 (s, $3H$); ¹³C NMR (75 MHz, CDCl₃) δ 197.2, 164.0, 138.8, 137.3, 136.3, 132.9, 131.2, 130.9, 130.3, 128.8, 128.7, 128.0, 127.1, 126.9, 126.2, 126.0, 114.0, 55.7; IR (ATR) ν 2956 (w), 1651 (m), 1594 (s), 1252 (s), 1148 (s); HRMS (EI) calcd for $C_{22}H_{18}O_2$ [M⁺] 314.1307, found 314.1306; MS (EI) m/z 314 (100), 237 (18), 206 (24), 178 (12), 108 (22). Anal. Calcd for $C_{22}H_{18}O_2$ (314.38): C, 84.0; H, 5.8. Found: C, 83.5; H, 5.8.

(E)-(2-(4-Chlorostyryl)phenyl)-(4-methoxyphenyl)methanone (18bb). Following the general procedure, 9b (100 mg, 0.31 mmol) and 17b (47 μ L, 0.37 mmol) were converted to 18bb (92 mg, 0.26 mmol, 86%): colorless solid; mp 95−96 °C; ¹ H NMR (300 MHz, CDCl₃) δ 7.87−7.77 (m, 3H), 7.51 (ddd, J = 8.0, 8.0, 2.2 Hz, 1H), 7.42−7.20 (m, 6H), 7.18 (d, J = 16.2 Hz, 1H), 7.02 (d, J = 16.2 Hz, 1H), 6.95 (dm, J = 8.9 Hz, 2H), 3.88 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 197.0, 164.1, 138.8, 136.1, 135.8, 133.6, 132.9, 130.8, 130.4, 129.9, 128.9, 128.9, 128.1, 127.2, 128.8, 126.0, 113.9, 55.7; IR (ATR) ν 2927 (w), 1651 (m), 1594 (s), 1491 (m), 1253 (s); HRMS (EI) calcd for $C_{22}H_{17}O_2Cl$ [M⁺] 348.0917, found 348.0925; MS (EI) m/z 348 (100), 240 (18), 108 (46). Anal. Calcd for $C_{22}H_{17}ClO_2$ (348.83): C, 75.7; H, 4.9. Found: C, 75.2; H, 4.8.

(E)-(4-Chlorophenyl)-(2-styrylphenyl)methanone (18ca). Following the general procedure, 9c (100 mg, 0.30 mmol) and 17a (42 μ L, 0.36 mmol) were converted to 18ca (75 mg, 0.24 mmol, 78%):orangeyellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.86–7.75 (m, 3H), 7.51 (ddd, J = 8.0, 8.0, 2.2 Hz, 1H), 7.45 (dm, J = 8.7 Hz, 2H), 7.42–7.24 $(7H)$, 7.21 (d, J = 16.3 Hz, 1H), 7.07 (d, J = 16.2 Hz, 1H); ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$ δ 197.2, 140.0, 137.6, 137.1, 136.8, 136.4, 131.8, 131.8, 131.0, 129.1, 129.0, 128.8, 128.2, 127.1, 126.9, 126.4, 125.9; IR(ATR) ν 3058 (w), 1658 (m), 1585 (s), 1271 (m), 1089 (s); HRMS (EI) calcd for $C_{21}H_{15}OCl$ [M⁺] 318.0811, found 318.0809; MS (EI) m/z 318 (100), 241 (33), 206 (26), 178 (20). Anal. Calcd for C21H15OCl (318.80): C, 79.1; H, 4.7. Found: C, 79.0; H, 4.7.

(E)-(4-Chlorophenyl)-(2-(4-chlorostyryl)phenyl)methanone (18cb). Following the general procedure, 9c (100 mg, 0.30 mmol) and 17b (42 μ L, 0.36 mmol) were converted to 18cb (85 mg, 0.24 mmol, 80%): colorless solid; mp 90−92 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.85−7.75 (m, 3H), 7.55 (ddd, J = 8.0, 8.0, 2.4 Hz, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.42−7.24 (m, 6H), 7.19 (d, J = 16.2 Hz, 1H), 7.01 (d, J = 16.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.1, 140.1, 137.6, 136.6, 136.3, 135.7, 133.8, 131.9, 131.1, 130.5, 129.3, 129.1, 129.0, 128.1, 127.3, 126.6, 126.4; IR (ATR) ν 3058 (w), 1649 (m), 1594 (s), 1262 (s), 700 (s); HRMS (EI) calcd for $C_{21}H_{14}OCl_2$ [M⁺] 352.0422, found 352.0427; MS (EI) m/z 314 (56), 237 (44), 194 (35), 165 (100), 105 (78). Anal. Calcd for $C_{21}H_{14}OCl_2$ (353.24): C, 71.4; H, 3.9. Found: C, 71.0; H, 4.0.

 (E) -1-(2-Styrylphenyl)butan-1-one (18fa). Following the general procedure, 9f (85 mg, 0.32 mmol) and 17a (44 μ L, 0.38 mmol) were converted to 18 fa (46 mg, 0.18 mmol, 57%): yellow oil; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$ δ 7.73 (d, J = 7.8 Hz, 1H), 7.63 (m, 1H), 7.59– 7.50 (m, 3H), 7.45 (dd, J = 7.6, 1.1 Hz, 1H), 7.43−7.34 (m, 3H), 7.34−7.25 (m, 2H), 7.02 (d, J = 16.2 Hz, 1H), 2.93 (t, J = 7.6 Hz, 2H), 1.78 (sext, $J = 7.6$ Hz, 2H), 1.02 (t, $J = 7.4$ Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 205.6, 138.5, 137.5, 137.0, 131.8, 131.3, 128.9, 128.4, 128.1, 127.4, 127.4, 127.4 127.0, 44.4, 18.2, 14.1; IR (ATR) ν 2961 (w), 1681 (s), 1494 (m), 1204 (m), 759 (s); HRMS (EI) calcd for $C_{18}H_{18}O$ [M⁺] 250.1358, found 250.1361; MS (EI) m/z 250 (36), 221 (32), 207 (42), 178 (100), 91 (26).

(E)-1-(2-(4-Chlorostyryl)phenyl)butan-1-one (18fb). Following the general procedure, 9f (85 mg, 0.32 mmol) and 17b (48 μ L, 0.38 mmol) were converted to 18fb (57 mg, 0.20 mmol, 63%): yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, J = 7.6 Hz, 1H), 7.69 (dd, J = 7.7, 0.9 Hz, 1H), 7.59 (d, J = 16.2 Hz, 1H), 7.54−7.25 (m, 6H), 6.95 $(d, J = 16.2 \text{ Hz}, 1\text{H})$, 2.92 $(t, J = 7.3 \text{ Hz}, 2\text{H})$, 1.78 (sext, $J = 7.6 \text{ Hz}$, 2H), 1.01 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 205.2, 138.2, 136.9, 136.0, 133.6, 131.5, 130.3, 129.0, 128.6, 128.2, 128.1, 127.6, 127.4, 44.1, 18.2, 14.1; IR (ATR) ν 2961 (w), 1680 (s), 1490 (m), 1203 (m), 1089 (m); HRMS (EI) calcd for $C_{18}H_{17}OCl$ $[M^+]$ 284.0968, found 284.0965; MS (EI) m/z 284 (38), 241 (64), 178 (100), 151 (30), 88 (34).

(E)-(4-Methoxy-2-styrylphenyl)(phenyl)methanone (18ga). Following the general procedure, 9g (100 mg, 0.31 mmol) and 17a (42 μ L, 0.37 mmol) were converted to 18ga (67 mg, 0.21 mmol, 70%): orange-yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (dm, J = 7.8 Hz, 2H), 7.58 (m, 1H), 7.54−7.35 (m, 6H), 7.35−7.20 (m, 4H), 7.06 $(d, J = 16.2 \text{ Hz}, 1\text{H})$, 6.87 (dd, $J = 8.5$, 2.4 Hz, 1H), 3.95 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.6, 161.8, 140.0, 139.0, 137.3, 132.9, 132.5, 131.5, 130.6, 130.4, 128.8, 128.5, 128.1, 127.0, 126.9, 112.5, 111.5, 55.7; IR (ATR) ν 3058 (w), 1649 (m), 1594 (m), 1263 (m), 700 (s); HRMS (EI) calcd for $C_{22}H_{18}O_2$ $[M^+]$ 314.1307, found 314.1311; MS (EI) m/z 314 (50), 237 (40), 165 (100), 105 (70).

(E)-(2-(4-Chlorostyryl)-4-methoxyphenyl)(phenyl)methanone (18gb). Following the general procedure, 9g (100 mg, 0.31 mmol) and 17b (46 μ L, 0.37 mmol) were converted to 18gb (80 mg, 0.23 mmol, 75%): yellow solid; mp 108−110 °C; ¹ H NMR (300 MHz, CDCl3) δ 7.82 (d, J = 8.0 Hz, 2H), 7.59 (dd, J = 7.3, 7.3 Hz, 1H), 7.52−7.39 (m, 3H), 7.39−7.23 (m, 6H), 7.00 (d, J = 16.2 Hz, 1H), 6.88 (dd, J = 8.6, 2.4 Hz, 1H), 3.95 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.5, 161.9, 139.7, 138.9, 135.8, 133.7, 132.9, 132.7, 130.5, 130.4, 130.1, 128.9, 128.6, 128.2, 127.5, 112.6, 111.6, 55.7; IR (ATR) ν 3062 (w), 1649 (m), 1594 (s), 1491 (m), 1260 (s); HRMS (EI) calcd for $C_{22}H_{17}O_2Cl$ [M⁺] 348.0917, found 348.0923; MS (EI) m/z 348 (26), 237 (26), 165 (56), 105 (47), 77 (78). Anal. Calcd for $C_{22}H_{17}O_2Cl$ (348.83): C, 75.7; H, 4.9. Found: C, 75.2; H, 4.9.

(E)-(4-Chloro-2-styrylphenyl)(phenyl)methanone (18ia). Following the general procedure, 9i (100 mg, 0.30 mmol) and 17a (42 μ L, 0.37 mmol) were converted to 18ia (77 mg, 0.24 mmol, 80%): yellow solid; mp 68–71 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.89–7.79 (m, 3H), 7.61 (tm, J = 7.5 Hz, 1H), 7.49 (dd, J = 7.4, 7.4 Hz, 2H), 7.41− 7.22 (m, 7H), 7.19 (d, J = 16.2 Hz, 1H), 7.08 (d, J = 16.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.4, 138.9, 137.8, 137.0, 136.8, 136.3, 133.7, 132.7, 130.8, 130.4, 128.9, 128.8, 128.5, 127.1, 127.0, 126.2, 124.9; IR (ATR) ν 3059 (w), 1658 (s), 1584 (m), 1271 (m), 1243 (m); HRMS (EI) calcd for $C_{21}H_{15}OCl$ $[M^+]$ 318.0811, found 318.00807; MS (EI) m/z 318 (32), 241 (36), 178 (66), 105 (74), 77 (100). Anal. Calcd for $C_{21}H_{15}OCl$ (318.80): C, 79.1; H, 4.7. Found: C, 78.7; H, 4.7.

(E)-(4-Chloro-2-(4-chlorostyryl)phenyl(phenyl)methanone (18ib). Following the general procedure, 9i (100 mg, 0.30 mmol) and 17b (46 μ L, 0.36 mmol) were converted to 18ib (80 mg, 0.23 mmol, 75%): yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.87−7.70 (m, 3H), 7.58 (t, J = 7.5 Hz, 1H), 7.45 (dd, J = 7.4, 7.4 Hz, 2H), 7.36−7.18 (m, 6H), 7.13 (d, J = 16.2 Hz, 1H), 6.98 (d, J = 16.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.3, 138.6, 137.8, 137.2, 136.2, 135.3, 134.2, 133.7, 131.3, 130.9, 130.4, 129.1, 128.8, 128.2, 127.2, 126.2, 125.6; IR (ATR) ν 3061 (w), 1658 (s), 1583 (m), 1489 (s), 1267 (m); MS (EI) m/z 354 (6), 352 (10), 176 (60), 105 (45), 77 (100).

General Procedure for the Synthesis of Biaryls 20. To a solution of arene diazonium salt 9 (1.0 equiv) in anhydrous methanol or dioxane (15 mL per mmol of 9) were added $Pd(OAc)$, (5 mol %) and the potassium organotrifluoroborate 19 (1.2 equiv). The reaction mixture was stirred for 12 h at ambient temperature and then filtered through a short pad of Celite, which was washed with MTBE (30 mL). All volatiles were evaporated, and the residue was purified by chromatography on silica, using hexane−MTBE mixtures as eluent.

 $Biphenyl-2-yl(phenyl)methanone (20aa).$ ⁸³ Following the general procedure, 9a (100 mg, 0.34 mmol) and 19a (75 mg, 0.41 mmol) were converted to 20aa (in methanol: 80 mg, 0.3[1 m](#page-11-0)mol, 91%; in dioxane: 82 mg, 0.32 mmol, 93%): yellow solid; mp 88 °C; ¹ H NMR (300 MHz, CDCl₃) δ 7.63 (dm, J = 8.5 Hz, 2H), 7.60–7.34 (m, 5H), 7.30– 7.09 (m, 7H); 13C NMR (75 MHz, CDCl3) δ 198.9, 141.3, 140.4, 139.2, 137.6, 132.9, 130.5, 130.3, 130.1, 129.2, 128.9, 128.4, 128.3, 127.5, 127.3; IR (ATR) ν 3058 (w), 1660 (s), 1448 (m), 1277 (s), 927 (m); HRMS (ESI) calcd for $C_{19}H_{14}O$ $[M^+]$ 258.1045, found 258.1042; MS (EI) m/z 258 (60), 181 (86), 152 (100), 105 (66), 77 (74).

Biphenyl-2-yl(4-methoxyphenyl)methanone (20ba). Following the general procedure, 9b (100 mg, 0.31 mmol) and 19a (68 mg, 0.37 mmol) were converted to 20ba (in methanol: 69 mg, 0.24 mmol, 78%; in dioxane: 80 mg, 0.28 mmol, 91%): yellow solid; mp 126−129 $^{\circ}$ C; ¹H NMR (300 MHz, DMSO- d_{6}) δ 7.68–7.46 (m, 5H), 7.42 (dm, J = 8.8 Hz, 1H), 7.32−7.15 (m, 5H), 6.92 (d, J = 8.8 Hz, 2H), 3.77 (s, 3H); ¹³C NMR (75 MHz, DMSO- d_6) δ 196.1, 163.2, 139.9, 138.9, 138.8, 131.9, 130.1, 129.9, 129.6, 128.5, 128.3, 127.9, 127.3, 127.2, 113.8, 55.5; HRMS (ESI) calcd for $C_{20}H_{16}O_2$ [M⁺] 288.1150, found 288.1136; MS (EI) m/z 288 (30), 181 (12), 152 (98), 135 (100), 92 (44). Anal. Calcd for $C_{20}H_{16}O_2$ (288.35): C, 83.3; H, 5.6. Found: C, 83.0; H, 5.6.

Biphenyl-2-yl(4-chlorophenyl)methanone (20ca).⁸⁴ Following the general procedure, 9c (100 mg, 0.30 mmol) and 19a (66 mg, 0.36 mmol) were converted to 20ca (in methanol: 68 mg, [0.2](#page-11-0)3 mmol, 77%; in dioxane: 58 mg, 0.20 mmol, 66%): yellow solid; mp 125 °C; ¹ H NMR (300 MHz, CDCl₃) δ 7.70−7.45 (m, 6H), 7.33−7.15 (m, 7H); ¹³C NMR (75 MHz, CDCl₃) δ 197.8, 141.3, 140.2, 139.4, 138.7, 135.9, 131.4, 130.8, 130.3, 129.2, 128.9, 128.6, 128.6, 127.7, 127.5; IR (ATR) ν 3059 (w), 1661 (s), 1584 (s), 1276 (s), 1089 (s); HRMS (EI) calcd for $C_{19}H_{13}$ OCl [M⁺] 292.0655, found 292.0662; MS (EI) m/z 292 (18), 181 (36), 152 (80), 139 (82), 57 (100). Anal. Calcd for C19H13OCl (292.76): C, 77.9; H, 4.5. Found: C, 77.4; H, 4.3.

 $1-(Biphenyl-2-yl) but an-1-one (20fa)$. Following the general procedure, 9f (85 mg, 0.32 mmol) and 19a (70 mg, 0.38 mmol) were converted to 20fa (in methanol: 57 mg, 0.25 mmol, 79%; in dioxane: 42 mg, 0.19 mmol, 59%): yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.52–7.28 (m, 9H), 2.19 (t, J = 7.6 Hz, 2H), 1.43 (sext, J =

7.6 Hz, 2H), 0.68 (t, J = 7.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 208.3, 141.5, 140.9, 140.2, 130.5, 130.3, 129.1, 128.8, 128.0, 127.8, 127.6, 45.0, 18.1, 13.8; IR (ATR) ν 2962 (w), 1685 (s), 1449 (w), 1207 (m), 743 (s); HRMS (ESI) calcd for $C_{16}H_{16}O$ [M⁺] 224.1201, found 224.1206; MS (EI) m/z 224 (18), 181 (100), 152 (74), 127 (22)

(5-Methoxybiphenyl-2-yl)(phenyl)methanone (20ga). Following the general procedure, 9g (100 mg, 0.31 mmol) and 19a (68 mg, 0.37 mmol) were converted to 20ga (in methanol: 78 mg, 0.27 mmol, 87%; in dioxane: 65 mg, 0.23 mmol, 73%): yellow solid; mp 81−84 °C; ¹ H NMR (300 MHz, CDCl₃) δ 7.65 (dm, J = 8.4 Hz, 2H), 7.54 (dm, J = 8.7 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 7.35−7.13 (m, 7H), 7.03−6.96 (m, 2H), 3.93 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 198.2, 161.4, 144.0, 140.6, 138.3, 132.6, 131.7, 131.6, 130.1, 129.1, 128.4, 128.1, 127.6, 115.8, 112.6, 55.7; IR (ATR) ν 3058 (w), 1656 (m), 1596 (s), 1282 (s), 926 (m); HRMS (ESI) calcd for $C_{20}H_{16}O_2$ [M⁺] 288.1150, found 288.1155; MS (EI) m/z 288 (56), 211 (100), 168 (34), 139 (54), 105 (56). Anal. Calcd for $C_{20}H_{16}O_2$ (288.35): C, 83.3; H, 5.6. Found: C, 82.9; H, 5.5.

(5-Chlorobiphenyl-2-yl)(phenyl)methanone (20ia). Following the general procedure, 9i (100 mg, 0.30 mmol) and 19a (66 mg, 0.36 mmol) were converted to 20ia (in methanol: 48 mg, 0.16 mmol, 55%; in dioxane: 68 mg, 0.23 mmol, 78%): yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.64 (dm, J = 8.4 Hz, 2H), 7.53–7.40 (m, 4H), 7.33–7.18 (m, 7H); ¹³C NMR (75 MHz, CDCl₃) δ 197.8, 143.2, 139.1, 137.5, 137.3, 136.5, 133.2, 130.4, 130.3, 130.0, 129.0, 128.6, 128.4, 128.1, 127.4; IR (ATR) ν 3059 (w), 1665 (s), 1589 (m), 1279 (m), 697 (s); HRMS (ESI) calcd for $C_{19}H_{13}OCl$ [M⁺] 292.0655, found 292.0667; MS (EI) m/z 292 (60), 214 (50), 126 (74), 105 (98), 77 (100).

(4-Chlorophenyl)(4′-methoxybiphenyl-2-yl)methanone (20cb). Following the general procedure, 9c (100 mg, 0.30 mmol) and 19b (96 mg, 0.45 mmol) were converted to 20cb (in dioxane: 96 mg, 0.30 mmol, quant): yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.58–7.50 $(m, 3H)$, 7.48–7.36 $(m, 3H)$, 7.25–7.18 $(m, 2H)$, 7.14 $(dm, J = 8.7$ Hz, 2H), 6.72 (dm, J = 8.7 Hz, 2H), 3.17 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 198.0, 159.3, 140.8, 139.4, 138.6, 135.9, 132.6, 131.4, 130.7, 130.3, 130.1, 128.8, 128.6, 127.0, 114.1, 55.4; IR (ATR) ν 2922 (m), 1603 (m), 1273 (s), 1039 (s), 822 (s); HRMS (ESI) calcd for $C_{20}H_{15}O_2Cl$ [M⁺] 322.0761, found 322.0762; MS (EI) m/z 322 (36), 211 (26), 139 (50), 58 (22), 60 (100).

(4-Chlorophenyl)(4′-fluorobiphenyl-2-yl)methanone (20cc). Following the general procedure, 9c (100 mg, 0.30 mmol) and 19c (73 mg, 0.36 mmol) were converted to 20cc (in dioxane: 81 mg, 0.26 mmol, 87%): colorless solid; mp 120−122 °C; ¹ H NMR (300 MHz, CDCl3) δ 7.65−7.42 (m, 6H), 7.30−7.18 (m, 4H), 6.98−6.88 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 197.6, 162.5 (d, J = 247.4 Hz), 140.1, 139.6, 138.7, 136.2 (d, J = 3.3 Hz), 135.8, 131.3, 130.8 (d, J = $2.7 H_7$) 130.7, 130.3, 128.9, 128.7, 127.6, 115.6 (d, J = 21.6 Hz); ¹⁹F 2.7 Hz), 130.7, 130.3, 128.9, 128.7, 127.6, 115.6 (d, $J = 21.6$ Hz); NMR (282 MHz, CDCl₃) δ –115.8; IR (ATR) ν 1661 (m), 1586 (m), 1222 (m), 905 (s), 728 (s); HRMS (ESI) calcd for $C_{19}H_{12}OClF$ [M⁺] 310.0561, found 310.0562; MS (EI) m/z 310 (100), 199 (84), 170 (80), 139 (64).

(4-Chlorophenyl)(2-(naphthalen-2-yl)phenyl)methanone (20cd). Following the general procedure, 9c (100 mg, 0.30 mmol) and 19d (85 mg, 0.36 mmol) were converted to 20cd (in dioxane: 98 mg, 0.28 mmol, 96%): colorless solid; mp 143−145 °C; ¹ H NMR (300 MHz, CDCl₃) δ 7.80–7.33 (m, 13H), 7.15 (d, J = 8.6 Hz, 2H); ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$ δ 197.8, 141.1, 139.4, 138.9, 137.6, 135.9, 133.3, 132.6, 131.3, 130.8, 130.6, 128.9, 128.6, 128.4, 128.3, 128.2, 127.8, 127.5, 127.0, 126.5, 126.4; IR (ATR) ν 3055 (w), 1663 (s), 1586 (s), 1286 (m), 927 (s); HRMS (ESI) calcd for C₂₃H₁₅OCl [M⁺] 342.0811, found 342.0819; MS (EI) m/z 342 (18), 202 (12), 83 (100), 47 (48). Anal. Calcd for C₂₃H₁₅OCl (342.82): C, 80.6; H, 4.4. Found: C, 80.3; H, 4.4.

■ ASSOCIATED CONTENT

6 Supporting Information

Copies of ${}^{1}H$ and ${}^{13}C$ NMR spectra for all compounds; crystallographic details for compound 14 (CCDC-1044259).

4232

This material is available free of charge via the Internet at http://pubs.acs.org.

■ [AUTHOR INF](http://pubs.acs.org)ORMATION

Corresponding Author

*E-mail: bernd.schmidt@uni-potsdam.de.

Notes

The auth[ors declare no competing](mailto:bernd.schmidt@uni-potsdam.de) financial interest.

■ ACKNOWLEDGMENTS

We thank Evonik Oxeno for generous donations of solvents and Umicore (Hanau, Germany) for generous donations of catalysts. We thank Ivonne Sander and Karla Fritze from the "Audiovisuelles Zentrum" (AVZ) of the University of Potsdam, Germany, for the realization of the cover art.

■ REFERENCES

(1) Fujiwara, Y.; Moritani, I.; Danno, S.; Asano, R.; Teranishi, S. J. Am. Chem. Soc. 1969, 91, 7166-7169.

(2) Ferreira, E. M.; Zhang, H.; Stoltz, B. M. Oxidative Heck-Type Reactions (Fujiwara−Moritani Reactions) In The Mizoroki-Heck Reaction; Oestreich, M., Ed.; Wiley: Chichester, 2009; pp 345−382.

(3) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318−5365.

(4) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740−4761.

(5) Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170−1214.

- (6) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147−1169.
- (7) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215−1292.

(8) Ackermann, L. Chem. Rev. 2011, 111, 1315−1345.

- (9) Ackermann, L. Acc. Chem. Res. 2014, 47, 281−295.
- (10) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588−5598.

(11) Fang, P.; Li, M.; Ge, H. J. Am. Chem. Soc. 2010, 132, 11898− 11899.

(12) Li, C.; Wang, L.; Li, P.; Zhou, W. Chem.-Eur. J. 2011, 17, 10208−10212.

(13) Wu, Y.; Li, B.; Mao, F.; Li, X.; Kwong, F. Y. Org. Lett. 2011, 13, 3258−3261.

- (14) Szabó, F.; Daru, J.; Simkó, D.; Nagy, T. Z.; Stirling, A.; Novák, Z. Adv. Synth. Catal. 2013, 355, 685−691.
- (15) Yuan, Y.; Chen, D.; Wang, X. Adv. Synth. Catal. 2011, 353, 3373−3379.
- (16) Han, S.; Sharma, S.; Park, J.; Kim, M.; Shin, Y.; Mishra, N. K.; Bae, J. J.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. J. Org. Chem. 2014, 79,
- 275−284.
- (17) Khatun, N.; Banerjee, A.; Santra, S. K.; Behera, A.; Patel, B. K. RSC Adv. 2014, 4, 54532−54538.
- (18) Khemnar, A. B.; Bhanage, B. M. Eur. J. Org. Chem. 2014, 6746− 6752.
- (19) Guin, S.; Rout, S. K.; Banerjee, A.; Nandi, S.; Patel, B. K. Org. Lett. 2012, 14, 5294−5297.
- (20) Yin, Z.; Sun, P. J. Org. Chem. 2012, 77, 11339−11344.
- (21) Wu, Y.; Choy, P. Y.; Mao, F.; Kwong, F. Y. Chem. Commun. 2013, 49, 689−691.
- (22) Weng, J.; Yu, Z.; Liu, X.; Zhang, G. Tetrahedron Lett. 2013, 54, 1205−1207.
- (23) Xu, Z.; Xiang, B.; Sun, P. RSC Adv. 2013, 3, 1679−1682.
- (24) Horino, H.; Inoue, N. J. Org. Chem. 1981, 46, 4416−4422.
- (25) Tremont, S. J.; Rahman, H. U. J. Am. Chem. Soc. 1984, 106, 5759−5760.
- (26) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2002, 124, 1586−1587.
- (27) Zhang, F.; Spring, D. R. Chem. Soc. Rev. 2014, 43, 6906−6919. (28) Rousseau, G.; Breit, B. Angew. Chem., Int. Ed. 2011, 50, 2450−
- 2494.
- (29) Wang, C.; Huang, Y. Synlett 2013, 24, 145−149.

(30) Bedford, R. B.; Limmert, M. E. J. Org. Chem. 2003, 68, 8669− 8682.

- (31) Schmidt, B.; Elizarov, N. Chem. Commun. 2012, 48, 4350−4352.
- (32) Schmidt, B.; Berger, R.; Hölter, F. Org. Biomol. Chem. 2010, 8, 1406−1414.
- (33) Schmidt, B.; Berger, R. Adv. Synth. Catal. 2013, 355, 463−476. (34) Schmidt, B.; Elizarov, N.; Berger, R.; Holter, F. Org. Biomol.
- Chem. 2013, 11, 3674−3691.
- (35) Roglans, A.; Pla-Quintana, A.; Moreno-Mañas, M. Chem. Rev. 2006, 106, 4622−4643.
- (36) Taylor, J. G.; Moro, A. V.; Correia, C. R. D. Eur. J. Org. Chem. 2011, 1403−1428.
- (37) Felpin, F.-X.; Nassar-Hardy, L.; Le Callonnec, F.; Fouquet, E. Tetrahedron 2011, 67, 2815−2831.
- (38) Oger, N.; d'Halluin, M.; Le Grognec, E.; Felpin, F.-X. Org. Process Res. Dev. 2014, 18, 1786−1801.

(39) Wang, C.; Chen, H.; Wang, Z.; Chen, J.; Huang, Y. Angew. Chem., Int. Ed. Engl. 2012, 51, 7242−7245.

- (40) Masters, K.-S.; Braese, S. Chem. Rev. 2012, 112, 3717−3776.
- (41) Azevedo, C. M. G.; Afonso, C. M. M.; Pinto, M. M. M. Curr. Org. Chem. 2012, 16, 2818−2867.
- (42) Yang, M.; Wu, L.; She, D.; Hui, H.; Zhao, Q.; Chen, M.; Huang, G.; Liang, Y. Synlett 2008, 448−452.
- (43) Huang, J.; Wan, C.; Xu, M.-F.; Zhu, Q. Eur. J. Org. Chem. 2013, 1876−1880.
- (44) Khanapure, S. P.; Garvey, D. S.; Young, D. V.; Ezawa, M.; Earl, R. A.; Gaston, R. D.; Fang, X.; Murty, M.; Martino, A.; Shumway, M.; Trocha, M.; Marek, P.; Tam, S. W.; Janero, D. R.; Letts, L. G. J. Med. Chem. 2003, 46, 5484−5504.

(45) Dethe, D. H.; Murhade, G. Org. Lett. 2013, 15, 429−431.

(46) Nishikata, T.; Kiyomura, S.; Yamamoto, Y.; Miyaura, N. Synlett 2008, 2487−2490.

- (47) Doyle, M. P.; Bryker, W. J. J. Org. Chem. 1979, 44, 1572−1574.
- (48) Kikukawa, K.; Matsuda, T. Chem. Lett. 1977, 159−162.
- (49) Pirisedigh, A.; Zarei, A.; Seyedjamali, H.; Khazdooz, L.;
- Hajipour, A. Monatsh. Chem. 2012, 143, 791−795.
- (50) Padala, K.; Jeganmohan, M. Org. Lett. 2011, 13, 6144−6147.
- (51) Grigg, R.; Sridharan, V.; Shah, M.; Mutton, S.; Kilner, C.; MacPherson, D.; Milner, P. J. Org. Chem. 2008, 73, 8352−8356.
- (52) Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D. Tetrahedron 2002, 58, 2253−2329.
- (53) Lazny, R.; Nodzewska, A. Chem. Rev. 2009, 110, 1386−1434.
- (54) Kappe, C. O. Chem. Soc. Rev. 2008, 37, 1127−1139.
- (55) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250−6284.
- (56) Gould, E.; Lebl, T.; Slawin, A. M. Z.; Reid, M.; Smith, A. D. Tetrahedron 2010, 66, 8992−9008.
- (57) Shintani, R.; Soh, Y.-T.; Hayashi, T. Org. Lett. 2010, 12, 4106− 4109.
- (58) Riviere, C.; Pawlus, A. D.; Merillon, J.-M. Nat. Prod. Rep. 2012, 29, 1317−1333.
- (59) Roupe, K. A.; Remsberg, C. M.; Yánez, J. A.; Davies, N. M. Curr. Clin. Pharamcol. 2006, 1, 81−101.
- (60) Bacchi, C. J.; Lambros, C.; Goldberg, B.; Hutner, S. H.; De Carvalho, G. D. F. Antimicrob. Agents Chemother. 1974, 6, 785−790.
- (61) Likhtenshtein, G. I. Stilbenes: Applications in Chemistry, Life Sciences and Materials Sciences; Wiley-VCH: Weinheim, 2009.
- (62) Kikukawa, K.; Maemura, K.; Kiseki, Y.; Wada, F.; Matsuda, T.; Giam, C. S. J. Org. Chem. 1981, 46, 4885−4888.
- (63) Akiyama, F.; Miyazaki, H.; Kaneda, K.; Teranishi, S.; Fujiwara, Y.; Abe, M.; Taniguchi, H. J. Org. Chem. 1980, 45, 2359−2361.
- (64) Nassar-Hardy, L.; Deraedt, C.; Fouquet, E.; Felpin, F.-X. Eur. J. Org. Chem. 2011, 4616−4622.
- (65) Felpin, F.-X.; Miqueu, K.; Sotiropoulos, J.-M.; Fouquet, E.; Ibarguren, O.; Laudien, J. Chem.-Eur. J. 2010, 16, 5191-5204.
- (66) Darses, S.; Jeffery, T.; Genêt, J.-P.; Brayer, J.-L.; Demoute, J.-P. Tetrahedron Lett. 1996, 37, 3857−3860.
- (67) Sengupta, S.; Bhattacharyya, S. J. Org. Chem. 1997, 62, 3405− 3406.

The Journal of Organic Chemistry Featured Article 30 and 2008 and 200

- (68) Colleville, A. P.; Horan, R. A. J.; Tomkinson, N. C. O. Org. Process Res. Dev. 2014, 18, 1128−1136.
- (69) Taylor, R. H.; Felpin, F. X. Org. Lett. 2007, 9, 2911−2914.
- (70) Felpin, F.-X.; Fouquet, E.; Zakri, C. Adv. Synth. Catal. 2009, 351, 649−655.
- (71) Darses, S.; Genêt, J. P. Chem. Rev. 2008, 108, 288-325.
- (72) Molander, G. A.; Canturk, B. Angew. Chem., Int. Ed. 2009, 48, 9240−9261.
- (73) Lennox, A. J. J.; Lloyd-Jones, G. C. Isr. J. Chem. 2010, 50, 664− 674.
- (74) Lennox, A. J. J.; Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2013, 52, 7362−7370.
- (75) Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412−443.
- (76) Darses, S.; Genêt, J.-P.; Brayer, J.-L.; Demoute, J.-P. Tetrahedron Lett. 1997, 38, 4393−4396.
- (77) Schmidt, B.; Hölter, F. Org. Biomol. Chem. 2011, 9, 4914−4920.
- (78) Bhadra, S.; Dzik, W. I.; Gooßen, L. J. Synthesis 2013, 45, 2387− 2390.
- (79) Chandler, S. A.; Hanson, P.; Taylor, A. B.; Walton, P. H.; Timms, A. W. J. Chem. Soc., Perkin Trans. 2 2001, 214−228.
- (80) Beadle, J. R.; Korzeniowski, S. H.; Rosenberg, D. E.; Garcia-Slanga, B. J.; Gokel, G. W. J. Org. Chem. 1984, 49, 1594−1603.
- (81) Gadallah, F. F.; Cantu, A. A.; Elofson, R. M. J. Org. Chem. 1973, 38, 2386−2393.
- (82) Hannig, E.; Kollmorgen, C.; Körner, M. Pharmazie 1976, 31, 534−536.
- (83) Cahiez, G.; Luart, D.; Lecomte, F. Org. Lett. 2004, 6, 4395− 4398.
- (84) Cosmo, R.; Sternhell, S. Aus. J. Chem. 1987, 40, 1499−1509.